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Abstract 

Using spin projection operator methods generating 

functions are developed for nuclear spin species. These 

operators also generate 
bl 

tations spanned by a
1 

the irreducible represen-

nuclear spin functions 

where a. is the number of possible spin states of the b. 
l l 

nuclei of the same kind in the molecule. From these 

generating functions the statistical weights of the rovibronic 

levels of any polyatomic molecule can be obtained easily. 

The method is illustrated with SF
6

, c13
-Triphenylene and 

triphenylene with protons replaced by D. For c13-Triphenylene 

there are 1073741824 nuclear spin functions from which we 

determine the statistical weights of the rovibronic levels 

I I 

A
1

, A2 , E, A
1

, A
2 

and E' to be 178940928, 178973696, 

357913600, 178940928, 178973696, and 357913600, respectively. 



1. Introduction 

Almost any theory or experiment in molecular spectroscopy concerns with the 

selection rules for rovibronic levels and the statistical weights of these levels 

which in turn yield information on the possible spectral lines and their intensi­

. 1-2 t1es. The usual approach for finding the statistical weights of rovibronic 

levels is to find the character of the irreducible representations spanned by the 

nuclear spin species of the nuclei in the molecule and then take the inner product 

of the rovibronic species and nuclear spin species and see if this contains the 

species of the overall internal function which must obey the Pauli exclusion 

principle. For a molecule containing b1 nuclei of the type 1, b2 nuclei of the 

type 2, etc., with their possible number of spin states being a
1

• a 2 etc., there 

bl b2 
are a

1 
a 2 spin functions; thus the problem that we address is indeed a 

complicated one. Even for a simple molecule like triphenylene (in its simplest 

form i.e., nuclei present as c12 
and 1H) there are 4096 spin functions. Conse-

quently, to find the irreducible representations that these spin functions span, 

if one has to enumerate all the 4096 functions, look at their transformation 

properties, then get their characters and break them into irreducible representa-

tions, then this problem will probably remain unsolved for complex polyatomics. 

However, fortunate we are, that there seems to be elegant methods to perform the 

above job instead of the brute force method outlined in the preceding line. It 

is to develop these methods that we undertake the present investigation. 

The statistical weights of the rotational levels in the rotational subgroup 

h b d . d b Pl k d T 11 3 W'l 4-S S h"f 6 d M' h' ? ave een 1scusse y acze an e er, 1 son, c a. er an 1zus 1ma. 

8 Later Hougen correlated these to the point groups of the molecules. Motivated 

by discussions with Hougen, Longuet-Higgins9 developed the symmetry groups of 

nonrigid molecules and discussed the statistical weights of their rovibronic 

1 F 11 . h' f L H' ' 1 l0-22 h leve s. o ow1ng t 1s paper o onguet- 1gg1ns, severa papers ave 
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appeared that describe the character tables and the properties of the symmetry 

groups of nonrigid molecules. 23 The present author showed that the symmetry 

groups of nonrigid molecules can be described by generalized wreath products. 

24-25 Further he developed methods which essentially lead to generating functions 

for the character tables of the symmetry groups of nonrigid molecules. For 

nonrigid molecules, generating functions for spin species can be obtained using 

some theorems on generalized wreath products outlined in references 24-25 even 

without knowing the character table of the nonrigid molecules. Essentially 

these generating functions are generated combinatorially just using the character 

tables of the composing groups of the generalized wreath products. They will 

be studied in a future paper. 

23-31 The present author has been interested in developing group theoretical 

methods for problems in chemistry. Some of the preliminary ideas in this paper 

can be found in these papers. The preliminary concepts required for this paper 

can be found in the text books. 32- 35 This paper uses formulations of Williamson
36 

for characters of one dimensional representations which have been recently 

generalized to characters of higher dimensional representations by Merris. 37 

In sec 2 operator methods and preliminaries are outlined, in sec 3 methods 

are formulated for the generation of nuclear spin species with illustrative 

examples and in the last section we consider the statistical weights of 

rovibronic states. 

2. Operator Theoretic Formulations 

A. Definitions and Preliminaries 

Let G be a group acting on a discrete set D. Let F be the set of all 

maps from D to R. For the problem of nuclear spin statistics D is a set of nuclei 

3 

and R is the set of possible spin states of the nuclei in D. For a set of spin 1/2 

nuclei R would be a set consisting of 2 elements which can be denoted by £ (spin up) 



and~ (spin down). G is the rotational subgroup or the point group of the 

molecule. In this paper we will use G to denote the point group rather than the 

rotational subgroup. The image of F is the set of spin functions. For example, 

the map f 1 from a set D, consisting of 4 nuclei, labeled 1, 2, 3 and 4, to R 

which consists of the spin states 2 and ~ is shown below. 

fl (1) 2 

fl (2) ~ 

fl (3) = ~ 

fl (4) =J¢ 

Then the spin function generated by f 1 is ~ ~ ~ ~· G acts on the elements of F 

by the procedure shown below. 

g(f(i)) f(g-l i) for every iED. 

-1 To illustrate if we take g to be the permutation (1234), then g = (1432). Thus 

for the map f 1 shown above 

gfl(l) 
-1 

fl (4) = fl(g 1) = Q 

gfl(2) 
-1 

fl (1) ::::: f1(g 2) = a -
gfl(3) 

-1 
fl(2) fl(g 3) = = s 

gfl(4) = -1 
= fl (3) fl(g 4) s. 

~ 

Thus by the action of the permutation (1234) on f, the spin function a S S a was 
,......, """"'"""""' ~ 

permuted to 2 2 ~ ~· Any permutation can be assigned a cycle representation as 

given by its cycle decomposition. For example, the permutation considered above 

viz. (1234) has just one cycle of length 4 which can be denoted by the cycle 

representation x!. Similarly, the permutation (12)(34) which has 2 cycles of 

4 



2 
length 2 can be denoted as x

2
• In general,if the permutation g has b

1 
cycles 

. bl b2 
of length 1, b2 cycles of length 2, etc., it has a cycle representat1on x

1 
x2 ... 

Define the cycle index of G, denoted as PG to be the sum of all the cycle repre­

sentations of G divided by jGj, the number of elements in G. In symbols, 

Two functions f. and f. in Fare equivalent if there is aginG such that 
1 J 

f.(d) = f.(gd), for every dED 
1 J 

where we assume i # j. All equivalent maps can be grouped together and they 

form an equivalence class which is called a pattern. Then G divides F into 

patterns. For the sake of mathematical manipulation with PG which will even­

tually yield generating functions for nuclear spin species we introduce the 

concept of weight of an element in R. With each rER, let us associate a weight 

w(r) which is just a symbol to differentiate the various spin states in the set 

R. For example, we may associate a weight a to the spin state Q and a weight S 

to the spin state ~ for the spin 1/2 problem. We can now define the weight of 

any function f in F as the product of the weights of the weights of the cor-

responding images. Symbolically, 

W(f) = TI w(f(d)). 
dro 

To illustrate consider the spin function map f
1 

which maps the 4 nuclei into the 

spin-function £ ~ ~ ~· The weight of this map would be a
2s2 

since a is the 

weight of ~ and S is the weight of ~· 

5 

Before we proceed further let us illustrate the cycle index PG of a group 

with G as the point group Oh' D as the set of 6 
19

F nuclei. A typical operation 

such as c
3 

(three fold rotation in Oh) permutes the six vertices of the octahedron. 



In fact, the result of this operation is the permutation (123)(456). This 

would be the representation of this operation in the Longuet-Higgins' permu­

tation inversion group.
9 

This has the cycle representation x~ (2 cycles of 

length 3). In this manner one finds the cycle representations of all the 

operations of Oh. Then one adds all these cycle representations and divides 

by the number of elements in Oh which is 48. Thus we get 

B. Spin Projection Operators 

Let V be a vector space of dimension ·r, the number of elements in the set 

R. For example, for the spin 1/2 problem V would be a 2 dimensional vector space. 

d 38 Let V be the d-fold tensor product of the vector space V. In symbols, 

where dis the number of elements in D. Let e
1

, e
2

, •... , er be a basis of V. 

With each f€F there is an associated ef defined below. 

which is a tensor in the space Vd. The set of tensors S 

basis for Vd. For any g€G let 

P(g) ef = egf = e ® e ® 
f(g-l 1) f(g-l 2) 

... ® e 
f(g-l d) 

Thus P(g) is a permutation operation relative to the basis S since it permutes 

the tensors in S by way of the action of g on f. Let g + x(g) be the character 

of an irreducible representation r in G. Williamson36 considered x to the 

6 



character of an one dimensional representation. However, Merris
37 

recently 

generalized this to characters of irreducible representations of higher dimen­

sion. Define an operator T2 as follows . 

.J:.r I X (g) p (g) . ,c, gE:G 

It can be shown that T2 is idempotent. That is, 

d It is thus a spin projection operator in the space V • 

Now, consider the subspace Vd of Vd spanned by all tensors that have the 
X 

same weight x. Equivalently Vd is spanned by the set Sx = {ef: W(f) = x}, 

where W(f) was defined in sec 2A. Let the restrictions of the operators T2 and 

P(g) to be space Vd be Tx.x and Px(g), respectively. 
X G Tx ,x l. s . . t G a sp1n proJec or 

of spin functions with the same weight x. For example, if we consider all 

functions of the type a a S B, a B a B, etc which have the same weight a
2s2 

""'""' """"',....,., ~"""""""""' "'-
= x, 

then Tx,x projects only these functions that have the same number of a's and B's 
G 

d 
in the spin subspace Vx. We can now define a weighted permutation operator PW(g) 

and a weighted projector T2'W as follows. 

{!) X p (g) 
X 

X 

X 

where ~ denotes a finite direct sum. A definition of finite direct sum can be 

7 

f d . h 35 oun 1n Hamermes . x's vary over all the functions. In a matrix representation 

trPW(g) 
(g) 

I W(f) 
f 



where the sum is taken over all f such that gf f. For example, for 2 F nuclei, 

R = {a, S,} and g = (12) 

In this setup Williamson and later Merris proved the following theorem. 

Theorem 1: 

Consequently, trTx.w 
G 

1 

TGT 

I x(g) Pw(g) 
gEG 

\(g) ~.J(f). I x(g) L. 
gEG f 

For our problem this theorem implies that the weighted spin projector is the 

same as the projection operator with permutation operator replaced by the corres-

ponding weighted permutation operator. Trace of the weighted spin projector is 

the generator of irreducible representations contained in the set of spin functions 

and the spin species. 

Let us now extend the concept of cycle index of a group G to a cycle index 

pX which corresponds to the character g ~ x(g) of the irreducible representation 
G 

r in the group G. pX is defined below. 
G 

bl b2 
where x

1 
x2 ••. has the same meaning as in sec 2A. Then it can be shown that 

theorem 1 takes the form, 

Tx,W = pX (xk ~ I k tr w (r)). G G rER 

The coefficient of a typical 
bl b2 

in Tx,W gives the frequency of term w1 w2 ... tr G 

8 



occurrence of the irreducible representation r whose character is x in the set 

bl b2 
of spin functions with the weight w

1 
w2 ••••• For example, let G = Oh' 

and 
D = {6 fluorene nuclei} I R = {a,B}. Set x to be the character of the represen-

tation, T2g. Then the coefficient of a 3s3 would give the number of T2g repre­

sentations occurring in the set of spin functions containing 3a's and 3B's 

which transform as a reducible representation of the group Oh. An example has 

been worked out in the next section. 

If one is just interested in finding the irreducible representations 

occurring in the reducible representation spanned by all the functions in F 

(instead of the details of these enumerations) then we just set all the weights 

to unity in theorem 1. This gives the following corolary. 

Corollary 1: The number of times the irreducible representation whose 

character is x occurs in the reducible representation formed by all f in F is 

given by 

where jRj is the number of elements in the set R. Note that this corollary 

not require the character of the reducible representation to decompose it into 

irreducible representations. It generates these directly from just the cycle 

index corresponding to the character X· It is this aspect which makes this 

different and elegant in comparison to the conventional techniques. 

3. Generating Functions for Nuclear Spin Species 

In this section we apply the methods outlined in sec 2 for obtaining 

generating functions for nuclear spin species. For this purpose we choose D to 

be the set of nuclei present in the molecule, R as the set of possible spin states. 

For example, if we consider the molecule SF
6

, with 19F and 32s then we consider S 

and 6F nuclei as separate D sets. The set R for F nuclei contains 2 elements 

9 



since 
19

F is a spin 1/2 nucleus and hence can take 2 possible spin states. We 

may associate the weights a and S to these states. Then any spin function 

formed by F nuclei is an image of a map from D to R. For example, £ £ ~ £ ~ ~ 

is such an image of a map from D to R. The weight of this particular map is 
a b 

a3s3 . In this example G = Oh. The coefficient of a 1 S 1 in trT2'W gives the 

number of times the irreducible representation whose character is x occurs in 

the reducible representation formed by the spin functions containing a
1
a's and 

b1S's. Since theorem 1 relates trT2'W to P2, in order to obtain these generating 

functions for nuclear spin species all that we need to obtain is the set of p2 

for all x in Oh. They can be obtained very easily using the character table 

of the group Oh and are shown in table 1 for Oh. From this table using theorem 1, 

generating functions for the fluorene species can be obtained easily. To illus-

trate, consider the species E • The nuclear spin species which belong to this 
g 

k species can be obtained by replacing every xk by (a+B) in the corresponding 

P;. The result of this substitution is shown below. 

Thus, 

The above expression on simplification yields 

Thus there is one E in the reducible representation spanned by spin functions 
g 

containing Sa's and 16, 2E in the reducible representation spanned by spin 
g 

functions containing 4a's and 26's and so on. The generating functions thus 

10 

obtained for the fluorene species are shown in Table 2. Looking at these generating 



functions the spin species can be immediately obtained. The coefficient of a 
al bl 

typical term a S in a generating function corresponding to the species r 

gives the number of functions belonging to the species with the spin quantum 

number m 
z When we arrange these species according to their m z 

values they separate into spin multiplets with m varying from -S to S. For 
z 

example, the generating functions which corresponds to Alg give raise to species 

7A 3 
lg and Alg' In this manner when we group the spin species into multiplets as 

obtained from their generating functions we obtain the fluorene species as 

7A 3 1 SE 3E 3 1 5 IT and 3 The spin species lg' Alg' A2g' g' g ' T2g' A2u' Tlu' lu T2u' 

of the 
32s nucleus is easily obtained 4 

as Alg since the spin 
32 

of S nucleus is 

11 

3/2. The overall spin species is the direct product of Sulfur and Fluorene 
s2 

species. 

sl s2 sl 
A typical direct product of the species D. and D. , D. 

1 J 1 

a Clebsch-Gordon series. 35 

where 

D. @ D. 
1 J 

I 
k 

sl + s2 

I 
s=ls -s I 1 .. 2 

~ D. , decomposes 
] 

the direct sum of irreducible representations Dk's contained in Di ® Dj. 

way we obtain the overall spin species as 

into 

This 

lOA 8 6 ( ) 4 ) 2 4 8E 6E (2), 4E (2). 2E (2). 6 
lg' Alg' Alg 2 , A1g(2 , Alg' A2g, g' g g • g . T2g, 

All these spin species span a reducible representation which is decomposed into 

the irreducible representations of Oh by adding all the multiplicities times the 

frequency of occurrence of the same species. The result is shown below. 



If one is interested in obtaining rspin instead of the actual spin multiplets 

then this can be generated directly by another method without generating the 

nuclear spin multiplets. For the purpose of statistical weights of rovibronic 

spin levels we need r only rather than the whole spin multiplet pattern. This 

will be considered separately in the next section. 

4. Statistical Weights of Rovibronic States 

In order to obtain the statistical weights of the rovibronic states we need 

the irreducible representations contained in rspin, the reducible representation 

spanned by the spin functions. We will use Corolary 1 outlined in sec 2B to find 

spin r • Let us start with the same SF6 example. Let us find the representation 

spanned by the fluorene species. Since the set R has 2 elements (2 spin states 

of fluorene), the frequency of occurrence of an irreducible representation r in 

~spin · obta1'ned by 1 · · th d' pX b 1F 1s rep ac1ng every xk 1n e correspon 1ng G y the llflumber of 

elements in R, which is 2 in this example. (cf. Cor.l). For example, number of 

times Alg occurs in the fluorene species is given by 

1 6 2 3 2 22 4 
48 [2 +8.2 +7.2 +6.2 .2+9.2 .2 +6.2.2+8.2+3.2 .2] = 10. 

Similarly, the frequency of occurrence of the species T2g is given by 

1 6 3 2 22 4 
48 [3.2 + 9.2 -6.2 .2+ 3.2 .2 - 6.2.2- 3.2 .2] = 3. 

In this way when we apply this to all the irreducible representations of Oh' we 

obtain 

rspin = 
F 

lOA
1 

+ A
2 

+ 8E + 3T
2 

+ A2 + 6T
1 

+ 3T2 . g g g g u u u 

32 Since the S nucleus spans the representation 

12 



The total spin representation rspin r~pin ® r;pin, is given by 

This agrees with our result in sec 3. The beauty of this method is that it did 

spin not require the character of r , a reducible representation of dimension 256, 
it 

to decompose/into its irreducible components. For c12 Triphenylene rspin is a 

reducible representation of dimension 4096. 

This method can be applied easily to complex polyatomic molecules. We give 

triphenylene in 3 forms as examples of such molecules. The point group of 

triphenylene can be easily seen to be n
3
h whose character table can be readily 

obtained. We now consider 12c triphenylene. In this molecule only the 12 

protons possess nuclear spin and hence we consider D as just these protons. The 

various cycle indices for these protons are shown below. 

p 
Al 1 12 

= 12 (2x1 + 
4 4x
3 + 6 6x

2
) 

A2 1 (2xi2 4 6 p =- + 4x
3 

6x
2

) 12 

PE 1 12 
= 12 (4x1 

4 4x
3
). 

All the other cycle indices are zero. The number of A
1
's, A

2
's and E's in 

rspin are shown below. 
H 

Thus 

N(A1) = i (2
12 + 2.2

4 + 3.2
6

) 720 

N(A2) = i (2
12 + 2.24 3.2

6
) = 656 

N(E) = ~ (2.2
12

- 2.24
).= 1360. 

720A1 + 656A2 + 1360 E. 

13 



When all the 12c carbon nuclei are replaced by 13c carbon nuclei then we have to 

consider the set of 18 carbon atoms to obtain rspin. We now let D be the set of 

13c carbon nuclei and R as their spin states. Then the various cycle indices are 

as follows. 

Al 1 [ 18 6 9 p =- xl + 2x
3 + 3x2] 6 

A2 1 
[xi8 + 6 9 p =- 2x - 3x2] 6 3 

PE 1 18 6 = - [2x - 2x ] . 6 1 3 

Again, the other cycle indices are zeros. Thus N(A1), N(A2), N(E) for carbon 

species are shown below. 

N(A1) =! (218 + 2.26 + 3.29) = 43968 6 

N(A2) =! (218 + 2.26 - 3.29) = 43456 6 

N(E) =i (2.218 6 - 2.2 ) 87360. 

Hence 

r~pin = 43968 A
1 

+ 43456 A2 + 87360E 

The overall spin species, rspin = r~pin ® r:pin is as follows 

rspin = 178973696 A
1 

+ 178940928 A
2 

+ 357913600E. 

As a last example we consider triphenylene with all protons replaced by deuterium 

and all carbons being 12c. (The case of 13c and D combination will be left to 

the reader!). Then we look at the transformation of D nuclei which is identical 

to those of H nuclei. However, we have to replace every xk by 3 instead of 2 

since the number of spin states of Dis 3. Thus N(A1), N(A2) and N(E) are the 

ones shown below. 

14 



N(E) = ! (2.312 - 2.34) = 177120. 
6 

Hence the deuterium spin species, rspin is as follows. 
D 

r~pin = 88965 A
1 

+ 88236 A
2 

+ 177120E. 

Once rspin is known obtaining the statistical weights is not difficult. This 

. d b . 1 . h rspin ® rrve h ld . int h rrve . h 1s one y st1pu at1ng t at s ou conta1~ r ,w ere 1s t e 

rovibronic species and rint is the species of the overall internal wavefunction. 

By the Pauli exclusion principle rint must be antisymmetric and hence the 

int 
character of r must be antisymmetric with respect to permutations alone. 

Let us now find the statistical weights of the rovibronic species of the 

molecules we have been considering as examples. We start with SF6• The overall 

internal wavefunction of this molecule can belong to species A2u or A2g by the 

Pauli principle. Thus rint = A
2
u or A

2
g. rspin for SF

6 
was already obtained. 

Using the condition that rspin ® rrve should contain A
2
u or A

2
g we obtain the 

statistical weights of all the rovibronic levels which are shown below with 

statistical weights in parenthesis. 

15 

For the molecule triphenylene int 1 
r can be A2 or A

2
. For the normal triphenylene 

(
12

c-H), the statistical weights of the rovibronic levels are indicated below. 

I I I 
A

1
(656), A2(720), E(l360), A

1 
(656), A

2
(720), E (1360). 



For 13c-triphenylene the statistical weights are as follows. 

A1 (178940928), A2 (178973696), E(357913600), 

Al(l78940928), A2(178973696), E'(357913600). 

In the end we consider D-triphenylene for which the statistical weights 

of the rovibronic levels are shown below. 

A
1

(88236), A2(88965), E(l77120), 

Ai(88236), A2(88965), E'(l77120). 

Generating functions for the statistical weights of rovibronic 

levels of nonrigid molecules can be obtained by composing elegantly 

the cycle indices of the composing groups. This subject will be 

treated separately in a future publication. 
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Table 1 

48P2 for Various Irreducible Representations in the Group Oh 

Irreducible 
Representation 

E 
g 

E 
u 

48 pX 
G 

6 2 3 2 22 4 
x

1 
+ Sx

3 
+ 7x

2 
+ 6x1x

4 
+ 9x

1
x

2 
+ 6x2x

4 
+ 8x6 + 3x

1
x2 

6 2 3 2 22 4 
x

1 
+ 8x

3 
- Sx2 - 6x1x4 - 3x1x2 - 6x2x4 + 8x6 + 3x1x2 
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Table 2 

Generating Functions of Fluorene Species of SF
6 

Irreducible 
Representation 

E 
g 

E 
u 

G. F. 

0 

0 

0 
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